Multicomponent gauge cell method.
نویسندگان
چکیده
The gauge cell Monte Carlo method [Neimark and Vishnyakov, J. Chem. Phys. 122, 234108 (2005)] for calculations of chemical potential in dense and strongly inhomogeneous fluids is extended to multicomponent systems. The system of interest is simulated in a sample cell that is placed in chemical contact with several gauge cells of limited capacity, one gauge cell per component. Thus, each component can be exchanged between the sample cell and the respective gauge cell. The sample and gauge cells are immersed into the thermal bath of a given temperature. The size of the gauge cell controls the level of concentration fluctuations for the respective component in the sample cell. The chemical potentials are rigorously calculated from the equilibrium distribution of particles between the system and the gauges, and the results do not depend on the gauge size. For large systems, the chemical potentials can be accurately estimated from the average densities in the gauge cells. The proposed method was tested against the literature data on the vapor-liquid equilibrium in a binary mixture of subcritical and supercritical fluids and against the grand canonical and Widom insertion Monte Carlo methods for a binary mixture confined to a very narrow spherical pore. The method is specifically suitable for simulations of metastable and labile states in multicomponent confined fluids.
منابع مشابه
Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملElectro-Organic Synthesis: An Efficient Method for the Preparation of Nanosized Particles of Phthalazine Derivatives via One-Pot Multicomponent Reactions
Aza heterocyclic compounds are major interest for organic chemists because of their mainly pharmacological activities and clinical applications such as antianxiety, antitumor, anticonvulsant, cardiotonic and vasorelaxant. This contribution describes an electrochemical approach for the preparation of nanosized particles of phthalazine in high yields and very short reaction time. The method is ba...
متن کاملElectron as potential and green catalyst in the multicomponent synthesis of pyrano [2, 3-d] pyrimidine derivatives
An electroorganic reaction for the synthesis of 7-amino-2, 4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2, 3-d] pyrimidine-6-carbonitrile and ethyl-7-amino-2, 4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2, 3-d] pyrimidine-6-carboxylate derivatives are described, using an electrogenerated base of the anion of malonitrile or ethylcyanoacetate. This one-pot, three-component condensation of an a...
متن کاملNew Algebra of Local Symmetries for Regge Limit of Yang{Mills Theories
Local effective action is derived to describe Regge asymptotic of Yang–Mills theories. Local symmetries of the effective action originating from the gauge symmetry of the underlying Yang–Mills theory are studied. Multicomponent effective action is introduced to express the symmetry transformations as field transformations. The algebra of these symmetries is decomposed onto a semi-direct sum of ...
متن کامل06 v 1 1 1 M ar 1 99 6 Equivalence of q - bosons using the exponential phase operator
Various forms of the q-boson are explained and their hidden symmetry revealed by transformations using the exponential phase operator. Both the one-component and the multicomponent q-bosons are discussed. As a byproduct, we obtain a new boson algebra having a shifted vacuum structure and define a global operatal U(1) gauge transformation. ∗Permanent address: Department of Physics, Jeonju Univer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 22 شماره
صفحات -
تاریخ انتشار 2009